Transfer Learning for COVID-19 Pneumonia Detection and Classification in Chest X-ray Images

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

We introduce a deep learning framework that can detect COVID-19 pneumonia in thoracic radiographs, as well as differentiate it from bacterial pneumonia infection. Deep classification models, such as convolutional neural networks (CNNs), require large-scale datasets in order to be trained and perform properly. Since the number of X-ray samples related to COVID-19 is limited, transfer learning (TL) appears as the go-to method to alleviate the demand for training data and develop accurate automated diagnosis models. In this context, networks are able to gain knowledge from pretrained networks on large-scale image datasets or alternative data-rich sources (i.e. bacterial and viral pneumonia radiographs). The experimental results indicate that the TL approach outperforms the performance obtained without TL, for the COVID-19 classification task in chest X-ray images.

Related articles

Related articles are currently not available for this article.