A Viral Fragmentation Signature for SARS-CoV-2 in Clinical Samples Correlating with Contagiousness
Abstract
The viral load of SARS-CoV-2 in clinical samples as measured by the primary diagnostic tool of RT-PCR is an imperfect readout for infection potential as most targeted assays designed for sensitivity, indiscriminately detect short and long RNA fragments, although infectivity is embodied only in the whole virus and its intact genome. Here, we used next-generation sequencing (NGS) to characterize 155 clinical samples and show sensitive and quantitative detection of viral RNA which confirmed subgenomic RNA in 57.6% of samples and provided a novel method to determine relative integrity of viral RNA in samples. The relative abundance of long fragments quantified as a viral fragmentation score was positively associated with viral load and inversely related to time from disease onset. An empirically determined score cut-off for presence of substantially fragmented RNA was able to identify 100% of samples collected after 8 days of illness with poor infection potential in line with current clinical understanding of infectiousness of SARS-CoV-2. The quantification of longer fragments in addition to existing short targets in an NGS or RT-PCR-based assay could provide a valuable readout of infection potential simultaneous to the detection of any fragments of SARS-CoV-2 RNA in test samples.
Related articles
Related articles are currently not available for this article.