Using image-based haplotype alignments to map global adaptation of SARS-CoV-2

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Quantifying evolutionary change among viral genomes is an important clinical device to track critical adaptations geographically and temporally. We built image-based haplotype-guided evolutionary inference (ImHapE) to quantify adaptations in expanding populations of non-recombining SARS-CoV-2 genomes. By combining classic population genetic summaries with image-based deep learning methods, we show that different rates of positive selection are driving evolutionary fitness and dispersal of SARS-CoV-2 globally. A 1.35-fold increase in evolutionary fitness is observed within the UK, associated with expansion of both the B.1.177 and B.1.1.7 SARS-CoV-2 lineages.

Related articles

Related articles are currently not available for this article.