Molecular Dynamics Reveals the Effects of Temperature on Critical SARS-CoV-2 Proteins

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a newly identified RNA virus that causes the serious infection Coronavirus Disease 2019 (COVID-19). The incidence of COVID-19 is still increasing worldwide despite the summer heat and cool winter. However, little is known about seasonal stability of SARS-CoV-2. Herein, we employ Molecular Dynamics (MD) simulations to explore the effect of temperature on four critical SARS-CoV-2 proteins. Our work demonstrates that the spike Receptor Binding Domain (RBD), Main protease (Mpro), and nonstructural protein 3 (macro X) possesses extreme thermos-stability when subjected to temperature variations rendering them attractive drug targets. Furthermore, our findings suggest that these four proteins are well adapted to habitable temperatures on earth and are largely insensitive to cold and warm climates. Furthermore, we report that the critical residues in SARS-CoV-2 RBD were less responsive to temperature variations as compared to the critical residues in SARS-CoV. As such, extreme summer and winter climates, and the transition between the two seasons, are expected to have a negligible effect on the stability of SARS-CoV-2 which will marginally suppress transmission rates until effective therapeutics are available world-wide.

Related articles

Related articles are currently not available for this article.