Prediction Models for Severe Manifestations and Mortality due to COVID-19: A Rapid Systematic Review
Abstract
Background
Throughout 2020, the coronavirus disease 2019 (COVID-19) has become a threat to public health on national and global level. There has been an immediate need for research to understand the clinical signs and symptoms of COVID-19 that can help predict deterioration including mechanical ventilation, organ support, and death. Studies thus far have addressed the epidemiology of the disease, common presentations, and susceptibility to acquisition and transmission of the virus; however, an accurate prognostic model for severe manifestations of COVID-19 is still needed because of the limited healthcare resources available.
Objective
This systematic review aims to evaluate published reports of prediction models for severe illnesses caused COVID-19.
Methods
Searches were developed by the primary author and a medical librarian using an iterative process of gathering and evaluating terms. Comprehensive strategies, including both index and keyword methods, were devised for PubMed and EMBASE. The data of confirmed COVID-19 patients from randomized control studies, cohort studies, and case-control studies published between January 2020 and July 2020 were retrieved. Studies were independently assessed for risk of bias and applicability using the Prediction Model Risk Of Bias Assessment Tool (PROBAST). We collected study type, setting, sample size, type of validation, and outcome including intubation, ventilation, any other type of organ support, or death. The combination of the prediction model, scoring system, performance of predictive models, and geographic locations were summarized.
Results
A primary review found 292 articles relevant based on title and abstract. After further review, 246 were excluded based on the defined inclusion and exclusion criteria. Forty-six articles were included in the qualitative analysis. Inter observer agreement on inclusion was 0.86 (95% confidence interval: 0.79 - 0.93). When the PROBAST tool was applied, 44 of the 46 articles were identified to have high or unclear risk of bias, or high or unclear concern for applicability. Two studied reported prediction models, 4C Mortality Score from hospital data and QCOVID from general public data from UK, and were rated as low risk of bias and low concerns for applicability.
Conclusion
Several prognostic models are reported in the literature, but many of them had concerning risks of biases and applicability. For most of the studies, caution is needed before use, as many of them will require external validation before dissemination. However, two articles were found to have low risk of bias and low applicability can be useful tools.
Related articles
Related articles are currently not available for this article.