Reliance of neuronal gene expression on cohesin scales with chromatin loop length

This article has 5 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Cohesin and CTCF are major drivers of 3D genome organization, but their role in neurons is still emerging. Here we show a prominent role for cohesin in the expression of genes that facilitate neuronal maturation and homeostasis. Unexpectedly, we observed two major classes of activity-regulated genes with distinct reliance on cohesin in primary cortical neurons. Immediate early genes remained fully inducible by KCl and BDNF, and short-range enhancer-promoter contacts at the Immediate early geneFosformed robustly in the absence of cohesin. In contrast, cohesin was required for full expression of a subset of secondary response genes characterised by long-range chromatin contacts. Cohesin-dependence of constitutive neuronal genes with key functions in synaptic transmission and neurotransmitter signaling also scaled with chromatin loop length. Our data demonstrate that key genes required for the maturation and activation of primary cortical neurons depend cohesin for their full expression, and that the degree to which these genes rely on cohesin scales with the genomic distance traversed by their chromatin contacts.

Related articles

Related articles are currently not available for this article.