SARS-CoV-2 Spike receptor-binding domain with a G485R mutation in complex with human ACE2

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Since SARS-CoV-2 emerged in 2019, genomic sequencing has identified mutations in the viral RNA including in the receptor-binding domain of the Spike protein. Structural characterisation of the Spike carrying point mutations aids in our understanding of how these mutations impact binding of the protein to its human receptor, ACE2, and to therapeutic antibodies. The Spike G485R mutation has been observed in multiple isolates of the virus and mutation of the adjacent residue E484 to lysine is known to contribute to antigenic escape. Here, we have crystallised the SARS-CoV-2 Spike receptor-binding domain with a G485R mutation in complex with human ACE2. The crystal structure shows that while the G485 residue does not have a direct interaction with ACE2, its mutation to arginine affects the structure of the loop made by residues 480-488 in the receptor-binding motif, disrupting the interactions of neighbouring residues with ACE2 and with potential implications for antigenic escape from vaccines, antibodies and other biologics directed against SARS-CoV-2 Spike.

Related articles

Related articles are currently not available for this article.