Hsp40s display class-specific binding profiles, serving complementary roles in the prevention of tau amyloid formation

This article has 5 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The microtubule-associated protein, tau, is the major subunit of neurofibrillary tangles, forming insoluble, amyloid-type aggregates associated with neurodegenerative conditions, such as Alzheimer’s disease. Tau aggregation, however, can be prevented in the cell by a class of proteins known as molecular chaperones, which play important roles in maintaining protein homeostasis. While numerous chaperones are known to interact with tau, though, little is known about the detailed mechanisms by which these prevent tau aggregation. Here, we describe the effects of the ATP-independent Hsp40 chaperones, DNAJA2 and DNAJB1, on tau amyloid fiber formation and compare these to the well-studied small heat shock protein HSPB1. We find that each chaperone prevents tau aggregation differently, by interacting with distinct sets of tau species along the aggregation pathway and thereby affecting their incorporation into fibers. Whereas HSPB1 only binds tau monomers, DNAJB1 and DNAJA2 recognize aggregation-prone tau conformers and even mature fibers, thus efficiently preventing formation of tau amyloids. In addition, we find that both Hsp40s bind tau seeds and fibers via their C-terminal domain II (CTDII), with DNAJA2 being further capable of recognizing tau monomers by a second, different site in CTDI. These results provide important insight into the molecular mechanism by which the different members of the Hsp40 chaperone family counteract the formation, propagation, and toxicity of tau aggregates. Furthermore, our findings highlight the fact that chaperones from different families and different classes play distinct, but complementary roles in preventing pathological protein aggregation.

Related articles

Related articles are currently not available for this article.