Dynamic Profiling of Binding and Allosteric Propensities of the SARS-CoV-2 Spike Protein with Different Classes of Antibodies: Mutational and Perturbation-Based Scanning Reveal Allosteric Duality of Functionally Adaptable Hotspots
Abstract
Structural and biochemical studies of the SARS-CoV-2 spike complexes with highly potent antibodies have revealed multiple conformation-dependent epitopes and a broad range of recognition modes linked to different neutralization responses In this study, we combined atomistic simulations with mutational and perturbation-based scanning approaches to perform in silico profiling of binding and allosteric propensities of the SARS-CoV-2 spike protein residues in complexes with B38, P2B-2F6, EY6A and S304 antibodies representing three different classes. Conformational dynamics analysis revealed that binding-induced modulation of soft modes can elicit the unique protein response to different classes of antibodies. Mutational scanning heatmaps and sensitivity analysis revealed the binding energy hotspots for different classes of antibodies that are consistent with the experimental deep mutagenesis, showing that differences in the binding affinity caused by global circulating variants in spike positions K417, E484 and N501 are relatively moderate and may not fully account for the observed antibody resistance effects. Through functional dynamics analysis and perturbation-response scanning of the SARS-CoV-2 spike protein residues in the unbound form and antibody-bound forms, we examine how antibody binding can modulate allosteric propensities of spike protein residues and determine allosteric hotspots that control signal transmission and global conformational changes. These results show that residues K417, E484, and N501 targeted by circulating mutations correspond to a group of versatile allosteric centers in which small perturbations can modulate collective motions, alter the global allosteric response and elicit binding resistance. We suggest that SARS-CoV-2 S protein may exploit plasticity of specific allosteric hotspots to generate escape mutants that alter response to antibody binding without compromising activity of the spike protein.
Related articles
Related articles are currently not available for this article.