Inferring the stabilization effects of SARS-CoV-2 variants on the binding with ACE2 receptor

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

With the progression of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic, several variants of the virus are emerging with mutations distributed all over the viral sequence. While most of them are expected to have little to no effects at the phenotype level, some of these variants presenting specific mutations on the Spike protein are rapidly spreading, making urgent the need of characterizing their effects on phenotype features like contagiousness and antigenicity. With this aim, we performed extensive molecular dynamics simulations on a selected set of possible Spike variants in order to assess the stabilizing effect of particular amino acid substitutions, with a special focus on the mutations that are both characteristic of the top three most worrying variants at the moment, i.e the English, South African and Amazonian ones, and that occur at the molecular interface between SARS-CoV-2 Spike protein and its human ACE2 receptor. We characterize these variants’ effect in terms of (i) residues mobility, (ii) compactness, studying the network of interactions at the interface, and (iii) variation of shape complementarity via expanding the molecular surfaces in the Zernike basis. Overall, our analyses highlighted greater stability of the three variant complexes with respect to both the wild type and two negative control systems, especially for the English and Amazonian variants. In addition, in the three variants, we investigate the effects a not-yet observed mutation in position 501 could provoke on complex stability. We found that a phenylalanine mutation behaves similarly to the English variant and may cooperate in further increasing the stability of the South African one, hinting at the need for careful surveillance for the emergence of such kind of mutations in the population. Ultimately, we show that the observables we propose describe key features for the stability of the ACE2-spike complex and can help to monitor further possible spike variants.

Related articles

Related articles are currently not available for this article.