Neurotrophic control of size regulation during axolotl limb regeneration
Abstract
The mechanisms that regulate the sizing of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the “tiny-limb” stage, that is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the Accessory Limb Model, we have found that the size of the limb can be positively and negatively manipulated by nerve abundance. We have additionally developed a new regenerative assay called the Neural Modified-ALM (NM-ALM), which decouples the source of the nerve from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential and instructive cues to regulate the final size of the regenerating limb.
Related articles
Related articles are currently not available for this article.