RNA splicing programs define tissue compartments and cell types at single cell resolution
Abstract
More than 95% of human genes are alternatively spliced. Yet, the extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach that is agnostic to transcript annotation, to detect cell-type-specific regulated splicing in > 110K carefully annotated single cells from 12 human tissues. Using 10x data for discovery, 9.1% of genes with computable SpliZ scores are cell-type specifically spliced. These results are validated with RNA FISH, single cell PCR, and in high throughput with Smart-seq2. Regulated splicing is found in ubiquitously expressed genes such as actin light chain subunitMYL6and ribosomal proteinRPS24, which has an epithelial-specific microexon. 13% of the statistically most variable splice sites in cell-type specifically regulated genes are also most variable in mouse lemur or mouse. SpliZ analysis further reveals 170 genes with regulated splicing during sperm development using, 10 of which are conserved in mouse and mouse lemur. The statistical properties of the SpliZ allow model-based identification of subpopulations within otherwise indistinguishable cells based on gene expression, illustrated by subpopulations of classical monocytes with stereotyped splicing, including an un-annotated exon, inSAT1, a Diamine acetyltransferase. Together, this unsupervised and annotation-free analysis of differential splicing in ultra high throughput droplet-based sequencing of human cells across multiple organs establishes splicing is regulated cell-type-specifically independent of gene expression.
Related articles
Related articles are currently not available for this article.