Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Molnupiravir is an orally available antiviral drug candidate that is in phase III trials for the treatment of COVID-19 patients1,2. Molnupiravir increases the frequency of viral RNA mutations3,4 and impairs SARS-CoV-2 replication in animal models4-6 and in patients2. Here we establish the molecular mechanisms that underlie molnupiravir-induced RNA mutagenesis by the RNA-dependent RNA polymerase (RdRp) of the coronavirus SARS-CoV-2. Biochemical assays show that the RdRp readily uses the active form of molnupiravir, β-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of CTP or UTP. Incorporation of NHC monophosphate into nascent RNA does not impair further RdRp progression. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes containing mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism likely applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.

Related articles

Related articles are currently not available for this article.