SARS-CoV-2 spike protein unlikely to bind to integrins via the Arg-Gly-Asp (RGD) motif of the Receptor Binding Domain: evidence from structural analysis and microscale accelerated molecular dynamics

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The Receptor Binding Domain (RBD) of SARS-CoV-2 virus harbors a sequence of Arg-Gly-Asp tripeptide named RGD motif, which has also been identified in extracellular matrix proteins that bind integrins as well as other disintegrins and viruses. Accordingly, integrins have been proposed as host receptors for SARS-CoV-2. The hypothesis was supported by sequence and structural analysis. However, given that the microenvironment of the RGD motif imposes structural hindrance to the protein-protein association, the validity of this hypothesis is still uncertain. Here, we used normal mode analysis, accelerated molecular dynamics microscale simulation, and protein-protein docking to investigate the putative role of RGD motif of SARS-CoV-2 RBD for interacting with integrins. We found, by molecular dynamics, that neither RGD motif nore its microenvironment show any significant conformational shift in the RBD structure. Highly populated clusters were used to run a protein-protein docking against three RGD-binding integrin types, showing no capability of the RBD domain to interact with the RGD binding site. Moreover, the free energy landscape revealed that the RGD conformation within RBD could not acquire an optimal geometry to allow the interaction with integrins. Our results highlighted different structural features of the RGD motif that may prevent its involvement in the interaction with integrins. We, therefore, suggest, in the case where integrins are confirmed to be the direct host receptors for SARS-CoV-2, a possible involvement of other residues to stabilize the interaction.

Related articles

Related articles are currently not available for this article.