Subcellular micropatterning for visual immunoprecipitation reveals differences in cytosolic protein complexes downstream the EGFR

This article has 3 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Analysis of protein-protein interactions in living cells by protein micropatterning is currently limited to the spatial arrangement of transmembrane proteins and their corresponding downstream molecules. Here we present a robust method for visual immunoprecipitation of cytosolic protein complexes by use of an artificial transmembrane bait construct in combination with micropatterned antibody arrays on cyclic olefin polymer (COP) substrates. The method was used to characterize Grb2-mediated signalling pathways downstream the epidermal growth factor receptor (EGFR). Ternary protein complexes (Shc1:Grb2:SOS1 and Grb2:Gab1:PI3K) were identified and we found that EGFR downstream signalling is based on constitutively bound (Grb2:SOS1 and Grb2:Gab1) as well as on agonist-dependent protein associations with transient interaction properties (Grb2:Shc1 and Grb2:PI3K). Spatiotemporal analysis further revealed significant differences in stability and exchange kinetics of protein interactions. Furthermore, we could show that this approach is well suited to study the efficacy and specificity of SH2 and SH3 protein domain inhibitors in a live cell context. Altogether, this method represents a significant enhancement of quantitative subcellular micropatterning approaches as an alternative to standard biochemical analyses.

Related articles

Related articles are currently not available for this article.