Evaluating the risk of SARS-CoV-2 transmission to bats using a decision analytical framework

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Preventing wildlife disease outbreaks is a priority issue for natural resource agencies, and management decisions can be urgent, especially in epidemic circumstances. With the emergence of SARS-CoV-2, wildlife agencies were concerned whether the activities they authorize might increase the risk of viral transmission from humans to North American bats but had a limited amount of time in which to make decisions. We provide a description of how decision analysis provides a powerful framework to analyze and re-analyze complex natural resource management problems as knowledge evolves. Coupled with expert judgment and avenues for the rapid release of information, risk assessment can provide timely scientific information for evolving decisions. In April 2020, the first rapid risk assessment was conducted to evaluate the risk of transmission of SARS-CoV-2 from humans to North American bats.

Based on the best available information, and relying heavily on formal expert judgment, the risk assessment found a small possibility of transmission during summer work activities. Following that assessment, additional knowledge and data emerged, such as bat viral challenge studies, that further elucidated the risks of human-to-bat transmission and culminated in a second risk assessment in the fall of 2020. We update the first SARS-CoV-2 risk assessment with new estimates of little brown bat (Myotis lucifugus) susceptibility and new management alternatives, using findings from the prior two risk assessments and other empirical studies. We highlight the strengths of decision analysis and expert judgment not only to frame decisions and produce useful science in a timely manner, but also to serve as a framework to reassess risk as understanding improves. For SARS-CoV-2 risk, new knowledge led to an 88% decrease in the median number of bats estimated to be infected per 1000 encountered when compared to earlier results. The use of facemasks during, or a negative COVID-19 test prior to, bat encounters further reduced those risks. Using a combination of decision analysis, expert judgment, rapid risk assessment, and efficient modes of information distribution, we provide timely science support to decision makers for summer bat work in North America.

Related articles

Related articles are currently not available for this article.