Single snapshot quantitative phase imaging with polarization differential interference contrast
Abstract
We present quantitative phase imaging with polarization differential interference contrast (PDIC) realized on a slightly modified differential interference contrast (DIC) microscope. By recording the Stokes vector rather than the intensity of the differential interference pattern with a polarization camera, PDIC enables single snapshot quantitative phase imaging with high spatial resolution in real-time at speed limited by the camera frame rate alone. The approach applies to either absorptive or transparent samples and can integrate simply with fluorescence imaging for co-registered simultaneous measurements. Furthermore, an algorithm with total variation regularization is introduced to solve the quantitative phase map from partial derivatives. After quantifying the accuracy of PDIC phase imaging with numerical simulations and phantom measurements, we demonstrate the biomedical applications by imaging the quantitative phase of both stained and unstained histological tissue sections and visualizing the fission yeast Schizosaccharomyces pombe’s cytokinesis.
Related articles
Related articles are currently not available for this article.