Deep Mutational Scanning of Dynamic Interaction Networks in the SARS-CoV-2 Spike Protein Complexes: Allosteric Hotspots Control Functional Mimicry and Resilience to Mutational Escape

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

We develop a computational approach for deep mutational scanning of residue interaction networks in the SARS-CoV-2 spike protein complexes to characterize mechanisms of functional mimicry and resilience to mutational escape by miniprotein inhibitors. Using a dynamic mutational profiling and sensitivity analysis of protein stability, binding interactions and global network parameters describing allosteric signaling, we identify regulatory hotspots in the SARS-CoV-2 S complexes with the ACE2 host receptor and ultra-potent miniproteins. The results revealed that global circulating variants are associated with allosteric control points that are dynamically coupled to structural stability hotspots. In this mechanism, variant-induced perturbations of flexible allosteric sites can result in global network changes and elicit specific protein responses. The binding affinity fingerprints and allosteric signatures of the SARS-CoV-2 complexes with miniproteins are determined by a dynamic cross-talk between regulatory control points and conformationally adaptable allosteric hotspots that collectively control structure-functional mimicry, signal transmission and resilience to mutational escape.

Related articles

Related articles are currently not available for this article.