Designing a Novel Multi-Epitope Vaccine against SARS-CoV-2; Implication for Viral Binds and Fusion Inhibition through Inducing Neutralizing Antibodies
Abstract
Recently the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pervasive threat to public health so it is an emergency to vaccine development. The SARS-CoV-2 spike (S) glycoprotein plays a vital role in binds and fusion to the angiotensin-converting enzyme 2 (ACE2). The multi-epitope peptide vaccines are capable of inducing the specific humoral or cellular immune responses. In this regard, the RBD and spike cleavage site is the most probable target for vaccine development to inducing binds and fusion inhibitors neutralizing antibodies. In the present study, several immunoinformatics tools are used for analyzing the spike (S) glycoprotein sequence including the prediction of the potential linear B-cell epitopes, B-cell multi-epitope design, secondary and tertiary structures, physicochemical properties, solubility, antigenicity, and allergenicity for the promising vaccine candidate against SARS-CoV-2.
Related articles
Related articles are currently not available for this article.