Genetic Loci and Metabolic States Associated With Murine Epigenetic Aging

This article has 4 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Changes in DNA methylation (DNAm) are linked to aging. Here, we profile highly conserved CpGs in 339 predominantly female mice belonging to the BXD family for which we have deep longevity and genomic data. We use a ‘pan-mammalian’ microarray that provides a common platform for assaying the methylome across mammalian clades. We computed epigenetic clocks and tested associations with DNAm entropy, diet, weight, metabolic traits, and genetic variation. We describe the multifactorial variance of methylation at these CpGs, and show that high fat diet augments the age-associated changes. Entropy increases with age. The progression to disorder, particularly at CpGs that gain methylation over time, was predictive of genotype-dependent life expectancy. The longer-lived BXD strains had comparatively lower entropy at a given age. We identified two genetic loci that modulate rates of epigenetic age acceleration (EAA): one on chromosome (Chr) 11 that encompasses the Erbb2/Her2 oncogenic region, and a second on Chr19 that contains a cytochrome P450 cluster. Both loci harbor genes associated with EAA in humans including STXBP4, NKX2-3, and CUTC. Transcriptome and proteome analyses revealed associations with oxidation-reduction, metabolic, and immune response pathways. Our results highlight concordant loci for EAA in humans and mice, and demonstrate a tight coupling between the metabolic state and epigenetic aging.

Related articles

Related articles are currently not available for this article.