SARS-CoV-2 Vaccine Induced Atypical Immune Responses in Antibody Defects: everybody does their best

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Background

Patients with Primary Antibody Deficiencies (PAD) represent a potential at-risk group in the current COVID-19 pandemic. However, unexpectedly low cumulative incidence, low infection-fatality rate, and mild COVID-19 or asymptomatic SARS-CoV-2 infections were frequently reported in PAD. The discrepancy between clinical evidence and impaired antibody production requires in-depth studies on patients’ immune responses.

Methods

Forty-one patients with Common Variable Immune Deficiencies (CVID), 6 patients with X-linked Agammaglobulinemia (XLA), and 28 healthy age-matched controls (HD) were analyzed for anti-Spike and anti-RBD antibody production, generation of low and high affinity Spike-specific memory B-cells, Spike-specific T-cells before and one week after the second dose of BNT162b2 vaccine.

Results

HD produced antibodies, and generated memory B-cells with high affinity for Trimeric Spike. In CVID, the vaccine induced poor Spike-specific antibodies, and atypical B-cells with low affinity for Trimeric Spike, possibly by extra-follicular reactions or incomplete germinal center reactions. In HD, among Spike positive memory B-cells, we identified receptor-binding-domain-specific cells that were undetectable in CVID, indicating the incapability to generate this new specificity. Specific T-cell responses toward Spike-protein were evident in HD and defective in CVID. Due to the absence of B-cells, patients with XLA responded to immunization by specific T-cell responses only.

Conclusions

We present detailed data on early non-canonical immune responses in PAD to a vaccine against an antigen never encountered before by humans. From our data, we expect that after BNT162b2 immunization, XLA patients might be protected by specific T-cells, while CVID patients might not be protected by immunization.

Related articles

Related articles are currently not available for this article.