BRET-based self-cleaving biosensors for SARS-CoV-2 3CLpro Inhibitor Discovery

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The 3C-like protease (3CLpro) of SARS-CoV-2 is an attractive drug target for developing antivirals against SARS-CoV-2. A few small molecule inhibitors of 3CLpro are in clinical trials for COVID-19 treatments and more inhibitors are being developed. One limiting factor for 3CLpro inhibitors development is that the cellular activities of such inhibitors have to be evaluated in a Biosafety Level 3 (BSL-3) or BSL-4 laboratory. Here, we design genetically encoded biosensors that can be used in BSL-2 laboratories to set up cell-based assays for 3CLpro inhibitor discovery. The biosensors were constructed by linking a green fluorescent protein (GFP2) to the N-terminus and a Renilla luciferase (RLuc8) to the C-terminus of SARS-CoV-2 3CLpro, with the linkers derived from the cleavage sequences of 3CLpro. After over-expression of the biosensors in HEK293 cells, 3CLpro can be released from GFP2 and RLuc by self-cleavage, resulting in a decrease of the bioluminescence resonance energy transfer (BRET) signal. Using one of these biosensors, pBRET-10, we evaluated the cellular activities of several 3CLpro inhibitors. These inhibitors restored the BRET signal by blocking the proteolysis of pBRET-10, and their relative activities measured using pBRET-10 were consistent with their anti-SARS-CoV-2 activities reported previously. We conclude that the biosensor pBRET-10 is a useful tool for SARS-CoV-2 3CLpro inhibitor discovery. Furthermore, our strategy can be used to design biosensors for other viral proteases that share the same activation mechanism as 3CLpro, such as HIV protease PR and HCV protease NS3.

Highlights

  • Sensitive cell-based biosensors for 3CLpro inhibitor discovery in BSL-2 laboratories.

  • The BRET-based self-cleaving biosensors mimic the in vivo autoproteolytic activation of 3CLpro.

  • Similar biosensors can be designed for other self-cleaving proteases, such as HIV protease PR and HCV protease NS3.

Related articles

Related articles are currently not available for this article.