SARS-CoV-2 introduction and lineage dynamics across three epidemic peaks in Southern Brazil: massive spread of P.1

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Background

Genomic surveillance of SARS-CoV-2 is paramount for understanding viral dynamics, contributing to disease control. This study analyzed SARS-CoV-2 genomic diversity in Rio Grande do Sul (RS), Brazil, including the first case of each Regional Health Coordination and cases from three epidemic peaks.

Methods

Ninety SARS-CoV-2 genomes from RS were sequenced and analyzed against SARS-CoV-2 datasets available in GISAID for phylogenetic inference and mutation analysis.

Results

SARS-CoV-2 lineages among the first cases in RS were B.1 (33.3%), B.1.1.28 (26.7%), B.1.1 (13.3%), B.1.1.33 (10.0%), and A (6.7%), evidencing SARS-CoV-2 introduction by both international origin and community-driven transmission. We found predominance of B.1.1.33 (50.0%) and B.1.1.28 (35.0%) during the first epidemic peak (July–August, 2020), emergence of P.2 (55.6%) in the second peak (November–December, 2020), and massive spread of P.1 and related sequences (78.4%), such as P.1-like-II, P.1.1 and P.1.2 in the third peak (February–April, 2021). Eighteen novel mutation combinations were found among P.1 genomes, and 22 different spike mutations and/or deletions among P.1 and related sequences.

Conclusions

This study shows the dispersion of SARS-CoV-2 lineages in Southern Brazil, and describes SARS-CoV-2 diversity during three epidemic peaks, highlighting the spread of P.1 and the high genetic diversity of currently circulating lineages. Genomic monitoring of SARS-CoV-2 is essential to guide health authorities’ decisions to control COVID-19 in Brazil.

Summary

Ninety SARS-CoV-2 genomes from Rio Grande do Sul, Brazil, were sequenced, including the first cases from 15 State Health Coordination regions and samples from three epidemic peaks. Phylogenomic inferences showed SARS-CoV-2 lineages spread, revealing its genomic diversity.

Related articles

Related articles are currently not available for this article.