On the nature of the earliest known lifeforms
Abstract
Microfossils from the Paleoarchean Eon are the oldest known evidence of life. Despite their significance in understanding the history of life on Earth, any interpretation of the nature of these microfossils has been a point of contention among researchers. Decades of back-and-forth arguments led to the consensus that reconstructing the lifecycles of Archaean Eon organisms is the most promising way of understanding the nature of these microfossils. Here, we transformed a Gram-positive bacterium into a primitive lipid vesicle-like state and studied it under environmental conditions prevalent on early Earth. Using this approach, we successfully reconstructed morphologies and life cycles of Archaean microfossils. In addition to reproducing microfossil morphologies, we conducted experiments that spanned years to understand the process of cell degradation and how Archaean cells could have undergone encrustation minerals (in this case, salt), leading to their preservation as fossilized organic carbon in the rock record. These degradation products strongly resemble fossiliferous features from Archaean rock formations. Our observations suggest that microfossils aged between 3.8 to 2.5Ga most likely were liposome-like protocells that have evolved physiological pathways of energy conservation but not the mechanisms to regulate their morphology. Based on these observations, we propose that morphology is not a reliable indicator of taxonomy in these microfossils.
Related articles
Related articles are currently not available for this article.