Branched ubiquitin chain binding and deubiquitination by UCH37 facilitate proteasome clearance of stress-induced inclusions

This article has 2 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

UCH37, also known as UCHL5, is a highly conserved deubiquitinating enzyme (DUB) that associates with the 26S proteasome. Recently it was reported that UCH37 activity is stimulated by branched ubiquitin chain architectures. To understand how UCH37 achieves its unique debranching specificity, we performed biochemical and NMR structural analyses and found that UCH37 is activated by contacts with the hydrophobic patches of both distal ubiquitins that emanate from a branched ubiquitin. In addition, RPN13, which recruits UCH37 to the proteasome, further enhances branched-chain specificity by restricting linear ubiquitin chains from having access to the UCH37 active site. In cultured human cells under conditions of proteolytic stress, we show that substrate clearance by the proteasome is promoted by both binding and deubiquitination of branched polyubiquitin by UCH37. Proteasomes containing UCH37(C88A), which is catalytically inactive, aberrantly retain polyubiquitinated species as well as the RAD23B substrate shuttle factor, suggesting a defect in recycling of the proteasome. These findings provide a foundation to understand how proteasome degradation of substrates modified by a unique ubiquitin chain architecture is aided by a DUB.

Related articles

Related articles are currently not available for this article.