Structure-based design of antisense oligonucleotides that inhibit SARS-CoV-2 replication

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Antisense oligonucleotides (ASOs) are an emerging class of drugs that target RNAs. Current ASO designs strictly follow the rule of Watson-Crick base pairing along target sequences. However, RNAs often fold into structures that interfere with ASO hybridization. Here we developed a structure-based ASO design method and applied it to target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our method makes sure that ASO binding is compatible with target structures in three-dimensional (3D) space by employing structural design templates. These 3D-ASOs recognize the shapes and hydrogen bonding patterns of targets via tertiary interactions, achieving enhanced affinity and specificity. We designed 3D-ASOs that bind to the frameshift stimulation element and transcription regulatory sequence of SARS-CoV-2 and identified lead ASOs that strongly inhibit viral replication in human cells. We further optimized the lead sequences and characterized structure-activity relationship. The 3D-ASO technology helps fight coronavirus disease-2019 and is broadly applicable to ASO drug development.

Related articles

Related articles are currently not available for this article.