High-resolution structures of the actomyosin-V complex in three nucleotide states provide insights into the force generation mechanism
Abstract
The molecular motor myosin undergoes a series of major structural transitions during its force-producing motor cycle. The underlying mechanism and its coupling to ATP hydrolysis and actin binding is only partially understood, mostly due to sparse structural data on actin-bound states of myosin. Here, we report 26 high-resolution cryo-EM structures of the actomyosin-V complex in the strong-ADP, rigor, and a previously unseen post-rigor transition state that binds the ATP analog AppNHp. The structures reveal a high flexibility of myosin in each state and provide valuable insights into the structural transitions of myosin-V upon ADP release and binding of AppNHp, as well as the actomyosin interface. In addition, they show how myosin is able to specifically alter the structure of F-actin. The unprecedented number of high-resolution structures of a single myosin finally enabled us to assemble a nearly complete structural model of the myosin-V motor cycle and describe the molecular principles of force production.
Related articles
Related articles are currently not available for this article.