Morphometric Analysis of Lungfish Endocasts Elucidates Early Dipnoan Palaeoneurological Evolution
Abstract
Lungfish (Dipnoi) are lobe-finned fish (Sarcopterygii) that have persisted for over 400 million years from the Devonian Period to present day. They are the extant sister group to tetrapods and thus have the ability to provide unique insight into the condition of the earliest tetrapods as well as their own evolutionary history. The evolution of their dermal skull and dentition is relatively well understood, but this is not the case for the central nervous system. While the brain itself has very poor preservation potential and is not currently known in any fossil lungfish, substantial indirect information about it and associated structures such as the inner ears can be obtained from the cranial endocast. However, before the recent development of X-ray tomography as a palaeontological tool, these endocasts could not be studied non-destructively, and few detailed studies were undertaken. Here we describe and illustrate the endocasts of six Palaeozoic lungfishes (Iowadipterus halli, Gogodipterus paddyensis, Pillararhynchus longi, Griphognathus whitei, Orlovichthys limnatis, andRhinodipterus ulrichi) from tomographic scans. We combine these with six previously described lungfish endocasts (4 fossil and 2 recent taxa), also based on tomographic studies, into a 12-taxon data set for multivariate morphometric analysis using 17 variables. We find that the olfactory region appears to be more highly plastic than the hindbrain, and undergoes significant elongation in several taxa. Further, while the semicircular canals covary as an integrated module, the utriculus and sacculus of the inner ear instead vary independently of each other. The functional and phylogenetic implications of our findings are discussed.
Related articles
Related articles are currently not available for this article.