Gene networks under circadian control exhibit diurnal organization in primate organs

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Mammalian organs are individually controlled by autonomous circadian clocks. At the molecular level, this process is defined by the cyclical co-expression of both core transcription factors and off-target genes across time. While interactions between these molecular clocks are likely necessary for proper homeostasis, these features remain undefined. Here, we utilize integrative analysis of a baboon diurnal transcriptome atlas to characterize the properties of gene networks under circadian control. We found that 53.4% (8,120) of baboon genes are rhythmically expressed body-wide. In addition, >30% of gene-gene interactions exhibit periodic co-expression patterns, with core circadian genes more cyclically co-expressed than others. Moreover, two basic network modes were observed at the systems level: daytime and nighttime mode. Daytime networks were enriched for genes involved in metabolism, while nighttime networks were enriched for genes associated with growth and cellular signaling. A substantial number of diseases only form significant disease modules at either daytime or nighttime. In addition, we found that 216 of 313 genes encoding products that interact with SARS-CoV-2 are rhythmically expressed throughout the body. Importantly, more than 80% of SARS-CoV-2 related genes enriched modules are rhythmically expressed, and have significant network proximities with circadian regulators. Our data suggest that synchronization amongst circadian gene networks is necessary for proper homeostatic functions and circadian regulators have close interactions with SARS-CoV-2 infection.

Related articles

Related articles are currently not available for this article.