Mechanistic Insights into the Effects of Key Mutations on SARS-CoV-2 RBD-ACE2 Binding

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Some recent SARS-CoV-2 variants appear to have increased transmissibility than the original strain. An underlying mechanism could be the improved ability of the variants to bind receptors on target cells and infect them. In this study, we provide atomic-level insight into the binding of the receptor binding domain (RBD) of the wild-type SARS-CoV-2 spike protein and its single (N501Y), double (E484Q, L452R) and triple (N501Y, E484Q, L452R) mutated variants to the human ACE2 receptor. Using extensive all-atom molecular dynamics simulations and advanced free energy calculations, we estimate the associated binding affinities and binding hotspots. We observe significant secondary structural changes in the RBD of the mutants, which lead to different binding affinities. We find higher binding affinities of the double (E484Q, L452R) and triple (N501Y, E484Q, L452R) mutated variants than the wild type and the N501Y variant, which could contribute to the higher transmissibility of recent variants containing these mutations.

Related articles

Related articles are currently not available for this article.