Lactoferricins access the cytosol of Escherichia coli within few seconds
Abstract
We report the real-time response of E. coli to lactoferricin-derived antimicrobial peptides (AMPs) on length-scales bridging microscopic cell-sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multi-scale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly saturate the bacterial envelope and reach the cytosol within less than three seconds—much faster than previously considered. Final cytosolic AMP concentrations of ~ 100 mM suggest an efficient shut-down of metabolism as primary cause for bacterial killing. On the other hand, the damage of the cell envelope is a collateral effect of AMP activity that does not kill the bacteria. This implies that the impairment of the membrane barrier is a necessary but not sufficient condition for microbial killing by lactoferricins. The most efficient AMP studied exceeds others in both speed of reaching cytoplasm and lowest cytosolic peptide concentration.
Related articles
Related articles are currently not available for this article.