Precise control of microtubule disassembly in living cells
Abstract
Microtubules (MTs) are components of the evolutionarily conserved cytoskeleton, which tightly regulates various cellular activities. Our understanding of MTs is largely based on MT-targeting agents, which, however, are insufficient to dissect the dynamic mechanisms of specific MT populations due to their slow effects on the entire pool of MTs in cells. To address this limitation, we have used chemogenetics and optogenetics to disassemble specific MT subtypes by rapid recruitment of engineered MT-cleaving enzymes. Acute MT disassembly swiftly halted vesicular trafficking and lysosome dynamics. We also used this approach to disassemble MTs specifically modified by tyrosination and several MT-based structures including primary cilia, mitotic spindles, and intercellular bridges. These effects were rapidly reversed by inhibiting the activity or MT association of the cleaving enzymes. The disassembly of targeted MTs with spatial and temporal accuracy enables to uncover new insights of how MTs precisely regulate cellular architectures and functions.
Related articles
Related articles are currently not available for this article.