Annotation of Putative Circadian Rhythm-Associated Genes in Diaphorina citri (Hemiptera : Liviidae)
Abstract
The circadian rhythm is a process involving multiple genes that generates an internal molecular clock, allowing organisms to anticipate environmental conditions produced by the earth’s rotation on its axis. This report presents the results of the manual curation of twenty-seven genes likely associated with circadian rhythm in the genome of Diaphorina citri, the Asian citrus psyllid. This insect acts as the vector of the bacterial pathogen Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease (Huanglongbing). This disease is the most severe detriment to citrus industries and has drastically decreased crop yields worldwide. Based on the genes identified in the psyllid genome, namely cry1 and cry2, D. citri likely possesses a circadian model similar to that of the lepidopteran butterfly, Danaus plexippus. Manual annotation of these genes will allow future molecular therapeutics to be developed that can disrupt the psyllid biology.
Related articles
Related articles are currently not available for this article.