SEIRDQ: A COVID-19 case projection modeling framework using ANN to model quarantine

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

We propose and implement a novel approach to model the evolution of COVID-19 pandemic and predict the daily COVID-19 cases (infected, recovered and dead). Our model builds on the classical SEIR-based framework by adding additional compartments to capture recovered, dead and quarantined cases. Quarantine impacts are modeled using an Artificial Neural Network (ANN), leveraging alternative data sources such as the Google mobility reports. Since our model captures the impact of lockdown policies through the quarantine functions we designed, it is able to model and predict future waves of COVID-19 cases. We also benchmark out-of-sample predictions from our model versus those from other popular COVID-19 case projection models.

Related articles

Related articles are currently not available for this article.