Effectiveness, Explainability and Reliability of Machine Meta-Learning Methods for Predicting Mortality in Patients with COVID-19: Results of the Brazilian COVID-19 Registry

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Objective

To provide a thorough comparative study among state-of-the-art machine learning methods and statistical methods for determining in-hospital mortality in COVID-19 patients using data upon hospital admission; to study the reliability of the predictions of the most effective methods by correlating the probability of the outcome and the accuracy of the methods; to investigate how explainable are the predictions produced by the most effective methods.

Materials and Methods

De-identified data were obtained from COVID-19 positive patients in 36 participating hospitals, from March 1 to September 30, 2020. Demographic, comorbidity, clinical presentation and laboratory data were used as training data to develop COVID-19 mortality prediction models. Multiple machine learning and traditional statistics models were trained on this prediction task using a folded cross-validation procedure, from which we assessed performance and interpretability metrics.

Results

The Stacking of machine learning models improved over the previous state-of-the-art results by more than 26% in predicting the class of interest (death), achieving 87.1% of AUROC and macro F1 of 73.9%. We also show that some machine learning models can be very interpretable and reliable, yielding more accurate predictions while providing a good explanation for the ‘why’.

Conclusion

The best results were obtained using the meta-learning ensemble model – Stacking. State-of the art explainability techniques such as SHAP-values can be used to draw useful insights into the patterns learned by machine-learning algorithms. Machine-learning models can be more explainable than traditional statistics models while also yielding highly reliable predictions.

Related articles

Related articles are currently not available for this article.