Drug targeting Nsp1-ribosomal complex shows antiviral activity against SARS-CoV-2

This article has 5 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The SARS-Cov-2 non-structural protein 1 (Nsp1) contains an N-terminal domain and C-terminal helices connected by a short linker region. The C-terminal helices of Nsp1 (Nsp1-C-ter) from SARS-Cov-2 bind in the mRNA entry channel of the 40S ribosomal subunit and block the entry of mRNAs thereby shutting down host protein synthesis. Nsp1 suppresses the host immune function and is vital for viral replication. Hence, Nsp1 appears to be an attractive target for therapeutics. In this study, we have in silico screened Food and Drug Administration (FDA)-approved drugs against Nsp1-C-ter and find that montelukast sodium hydrate binds to Nsp1-C-ter with a binding affinity (KD) of 10.8±0.2 μM in vitro and forms a stable complex with it in simulation runs with a binding energy of −76.71±8.95 kJ/mol. The drug also rescues the inhibitory effect of Nsp1 in host protein synthesis as demonstrated by the expression of firefly luciferase reporter gene in cells. Importantly, montelukast sodium hydrate demonstrates antiviral activity against SARS-CoV-2 with reduced viral replication in HEK cells expressing ACE2 and Vero-E6 cells. We therefore propose montelukast sodium hydrate may help in combatting SARS-CoV-2 infection.

Related articles

Related articles are currently not available for this article.