Characterization and simulation of metagenomic nanopore sequencing data with Meta-NanoSim
Abstract
Nanopore sequencing is crucial to metagenomic studies as its kilobase-long reads can contribute to resolving genomic structural differences among microbes. However, platform-specific challenges, including high base-call error rate, non-uniform read lengths, and the presence of chimeric artifacts, necessitate specifically designed analytical tools. Here, we present Meta-NanoSim, a fast and versatile utility that characterizes and simulates the unique properties of nanopore metagenomic reads. Further, Meta-NanoSim improves upon state-of-the-art methods on microbial abundance estimation through a base-level quantification algorithm. We demonstrate that Meta-NanoSim simulated data can facilitate the development of metagenomic algorithms and guide experimental design through a metagenomic assembly benchmarking task.
Related articles
Related articles are currently not available for this article.