AImmune: a new blood-based machine learning approach to improving immune profiling analysis on COVID-19 patients
Abstract
A massive number of transcriptomic profiles of blood samples from COVID-19 patients has been produced since pandemic COVID-19 begins, however, these big data from primary studies have not been well integrated by machine learning approaches. Taking advantage of modern machine learning arthrograms, we integrated and collected single cell RNA-seq (scRNA-seq) data from three independent studies, identified genes potentially available for interpretation of severity, and developed a high-performance deep learning-based deconvolution model AImmune that can predict the proportion of seven different immune cells from the bulk RNA-seq results of human peripheral mononuclear cells. This novel approach which can be used for clinical blood testing of COVID-19 on the ground that previous research shows that mRNA alternations in blood-derived PBMCs may serve as a severity indicator. Assessed on real-world data sets, the AImmune model outperformed the most recognized immune profiling model CIBERSORTx. The presented study showed the results obtained by the true scRNA-seq route can be consistently reproduced through the new approach AImmune, indicating a potential replacing the costly scRNA-seq technique for the analysis of circulating blood cells for both clinical and research purposes.
Related articles
Related articles are currently not available for this article.