In silico study on the effects of disulfide bonds in ORF8 of SARS-CoV-2
Abstract
The COVID-19 epidemic, caused by virus SARS-CoV-2, has been a pandemic and threatening everyone’s health in the past two years. In SARS-CoV-2, the accessory protein ORF8 plays an important role in immune modulation. Here we present an in silico study on the effects of the disulfide bonds in ORF8, including the effects on the structures, the binding sites and free energy when ORF8 binds to the human leukocyte antigen (HLA-A). Using the explicit solvent Molecular Dynamics (MD) simulations, we collect the conformational ensembles on ORF8 with different disulfide bonds reduction schemes. With a new visualization technique on the local geometry, we analyze the effects of the disulfide bonds on the structure of ORF8. We find that the disulfide bonds have large influences on the loop regions of the surface. Moreover, by performing docking between HLA-A and the conformational ensembles of ORF8, we predict the preferred binding sites and find that most of them are little affected by the disulfide bonds.Further, we estimate the binding free energy between HLA-A and ORF8 with different disulfide bonds reductions. In the end, from the comparison with the available experimental results on the epitopes of ORF8, we validated our binding sites prediction. All the above observations may provide inspirations on inhibitor/drug design against ORF8 based on the binding pathway with HLA-A.
Related articles
Related articles are currently not available for this article.