Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane

This article has 4 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Lipid droplets (LDs) are organelles formed in the endoplasmic reticulum (ER) to store triacylglycerol (TG) and sterol esters. The ER protein seipin is key for LD biogenesis. Seipin forms a cage-like structure, with each seipin monomer containing a conserved hydrophobic helix (HH) and two transmembrane (TM) segments. How the different parts of seipin function in TG nucleation and LD budding is poorly understood. Here, we utilized molecular dynamics simulations of human seipin, along with cell-based experiments, to study seipin’s functions in protein-lipid interactions, lipid diffusion, and LD maturation. All-atom (AA) simulations indicate that most seipin TM segment residues located in the phospholipid (PL) tail region of the bilayer attract TG. We also find seipin TM segments control lipid diffusion and permeation into the protein complex. Simulating larger, growing LDs with coarse-grained (CG) models, we find that the seipin TM segments form a constricted neck structure to facilitate conversion of a flat oil lens into a budding LD. Using cell experiments and simulations, we also show that conserved, positively charged residues at the end of seipin’s TM segments affect LD maturation. We propose a model in which seipin TM segments critically function in TG nucleation and LD growth.

Related articles

Related articles are currently not available for this article.