The Landscape-Based Protein Stability Analysis and Network Modeling of Multiple Conformational States of the SARS-CoV-2 Spike D614 Mutant: Conformational Plasticity and Frustration-Driven Allostery as Energetic Drivers of Highly Transmissible Spike Variant
Abstract
The structural and functional studies of the SARS-CoV-2 spike protein variants revealed an important role of the D614G mutation that is shared across many variants of concern(VOCs), suggesting the effect of this mutation on the enhanced virus infectivity and transmissibility. The recent structural and biophysical studies provided important evidence about multiple conformational substates of the D614G spike protein. The development of a plausible mechanistic model which can explain the experimental observations from a more unified thermodynamic perspective is an important objective of the current work. In this study, we employed efficient and accurate coarse-grained simulations of multiple structural substates of the D614G spike trimers together with the ensemble-based mutational frustration analysis to characterize the dynamics signatures of the conformational landscapes. By combining the local frustration profiling of the conformational states with residue-based mutational scanning of protein stability and network analysis of allosteric interactions and communications, we determine the patterns of mutational sensitivity in the functional regions and sites of variants. We found that the D614G mutation may induce a considerable conformational adaptability of the open states in the SARS-CoV-2 spike protein without compromising folding stability and integrity of the spike protein. The results suggest that the D614G mutant may employ a hinge-shift mechanism in which the dynamic couplings between the site of mutation and the inter-protomer hinge modulate the inter-domain interactions, global mobility change and the increased stability of the open form. This study proposes that mutation-induced modulation of the conformational flexibility and energetic frustration at the inter-protomer interfaces may serve as an efficient mechanism for allosteric regulation of the SARS-CoV-2 spike proteins.
Related articles
Related articles are currently not available for this article.