Glutathione binding to the plant AtAtm3 transporter and implications for the conformational coupling of ABC transporters

This article has 5 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The ATP Binding Cassette (ABC) transporter of mitochondria (Atm) from Arabidopsis thaliana (AtAtm3) has been implicated in the maturation of cytosolic iron-sulfur proteins and heavy metal detoxification, plausibly by exporting glutathione derivatives. Using single-particle cryo-electron microscopy, we have determined structures of AtAtm3 in multiple conformational states. These structures not only provide a structural framework for defining the alternating access transport cycle, but also highlight an unappreciated feature of the glutathione binding site, namely the paucity of cysteine residues that could potentially form inhibitory mixed disulfides with glutathione. Despite extensive efforts, we were unable to prepare the ternary complex of AtAtm3 with bound GSSG and MgATP. A survey of structurally characterized type IV ABC transporters that includes AtAtm3 establishes that while nucleotides are found associated with all conformational states, they are effectively required to stabilize occluded and outward-facing conformations. In contrast, transport substrates have only been observed associated with inward-facing conformations. The absence of structures containing both nucleotide and transport substrate suggests that this ternary complex exists only transiently during the transport cycle.

Related articles

Related articles are currently not available for this article.