Compared with SARS-CoV2 wild type’s spike protein, the SARS-CoV2 omicron’s receptor binding motif has adopted a more SARS-CoV1 and/or bat/civet-like structure

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Our study focuses on free energy calculations of SARS-CoV2 spike protein receptor binding motives (RBMs) from wild type and variants-of-concern with particular emphasis on currently emerging SARS- CoV2 omicron variants of concern (VOC). Our computational free energy analysis underlines the occurrence of positive selection processes that specify omicron host adaption and bring changes on the molecular level into context with clinically relevant observations. Our free energy calculations studies regarding the interaction of omicron’s RBM with human ACE2 shows weaker binding to ACE2 than alpha’s, delta’s, or wild type’s RBM. Thus, less virus is predicted to be generated in time per infected cell. Our mutant analyses predict with focus on omicron variants a reduced spike-protein binding to ACE2-receptor protein possibly enhancing viral fitness / transmissibility and resulting in a delayed induction of danger signals as trade-off. Finally, more virus is produced but less per cell accompanied with delayed Covid-19 immunogenicity and pathogenicity. Regarding the latter, more virus is assumed to be required to initiate inflammatory immune responses.

Related articles

Related articles are currently not available for this article.