Accelerating manufacturing to enable large-scale supply of a new adenovirus-vectored vaccine within 100 days

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The Coalition for Epidemic Preparedness Innovations’ ‘100-day moonshot’ aspires to launch a new vaccine within 100 days of pathogen identification. Here, we describe work to optimize adenovirus vector manufacturing for rapid response, by minimizing time to clinical trial and first large-scale supply, and maximizing the output from the available manufacturing footprint.

We describe a rapid viral seed expansion workflow that allows vaccine release to clinical trials within 60 days of antigen sequence identification, followed by vaccine release from globally distributed sites within a further 40 days. We also describe a new perfusion-based upstream production process, designed to maximize output while retaining simplicity and suitability for existing manufacturing facilities. This improves upstream volumetric productivity of ChAdOx1 nCoV-19 by around four-fold and remains compatible with the existing downstream process, yielding drug substance sufficient for 10000 doses from each liter of bioreactor capacity.

Transition to a new production process across a large manufacturing network is a major task. In the short term, the rapid seed generation workflow could be used with the existing production process. We also use techno-economic modelling to show that, if linear scale-up were achieved, a single cleanroom containing two 2000 L bioreactors running our new perfusion-based process could supply bulk drug substance for around 120 million doses each month, costing <0.20 EUR/dose. We estimate that a manufacturing network with 32000 L of bioreactor capacity could release around 1 billion doses of a new vaccine within 130 days of genomic sequencing of a new pathogen, in a hypothetical ‘surge campaign’ with suitable prior preparation and resources, including adequate fill-and-finish capacity.

This accelerated manufacturing process, along with other advantages such as thermal stability, supports the ongoing value of adenovirus-vectored vaccines as a rapidly adaptable and deployable platform for emergency response.

Related articles

Related articles are currently not available for this article.