An ensemble prediction model for COVID-19 mortality risk
Abstract
Background
It’s critical to identify COVID-19 patients with a higher death risk at early stage to give them better hospitalization or intensive care. However, thus far, none of the machine learning models has been shown to be successful in an independent cohort. We aim to develop a machine learning model which could accurately predict death risk of COVID-19 patients at an early stage in other independent cohorts.
Methods
We used a cohort containing 4711 patients whose clinical features associated with patient physiological conditions or lab test data associated with inflammation, hepatorenal function, cardiovascular function and so on to identify key features. To do so, we first developed a novel data preprocessing approach to clean up clinical features and then developed an ensemble machine learning method to identify key features.
Results
Finally, we identified 14 key clinical features whose combination reached a good predictive performance of AUC 0.907. Most importantly, we successfully validated these key features in a large independent cohort containing 15,790 patients.
Conclusions
Our study shows that 14 key features are robust and useful in predicting the risk of death in patients confirmed SARS-CoV-2 infection at an early stage, and potentially useful in clinical settings to help in making clinical decisions.
Related articles
Related articles are currently not available for this article.