Combating the SARS-CoV-2 Omicron variant with non-Omicron neutralizing antibodies

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The highly mutated and transmissible Omicron variant has provoked serious concerns over its decreased sensitivity to the current coronavirus disease 2019 (COVID-19) vaccines and evasion from most anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies (NAbs). In this study, we explored the possibility of combatting the Omicron variant by constructing bispecific antibodies based on non-Omicron NAbs. We engineered ten IgG-like bispecific antibodies with non-Omicron NAbs named GW01, 16L9, 4L12, and REGN10987 by fusing the single-chain variable fragments (scFvs) of two antibodies through a linker and then connecting them to the Fc region of IgG1. Surprisingly, eight out of ten bispecific antibodies showed high binding affinity to the Omicron receptor-binding domain (RBD) and exhibited extreme breadth and potency against pseudotyped SARS-CoV-2 variants of concern (VOCs) including Omicron, as well as authentic Omicron(+R346K) variants. Six bispecific antibodies containing the cross-NAb GW01 neutralized Omicron variant and retained their abilities to neutralize other sarbecoviruses. Bispecific antibodies inhibited Omicron infection by binding to the ACE2 binding site. A cryo-electron microscopy (cryo-EM) structure study of the representative bispecific antibody FD01 in complex with the Omicron spike (S) revealed 5 distinct trimers and one unique bi-trimer conformation. The structure and mapping analyses of 34 Omicron S variant single mutants elucidated that two scFvs of the bispecific antibody synergistically induced the RBD-down conformation into 3-RBD-up conformation, enlarged the interface area, accommodated the S371L mutation, improved the affinity between a single IgG and the Omicron RBD, and hindered ACE2 binding by forming bi-trimer conformation. Our study offers an important foundation for anti-Omicron NAb design. Engineering bispecific antibodies based on non-Omicron NAbs may provide an efficient solution to combat the Omicron variant.

Related articles

Related articles are currently not available for this article.