Synthetic memory circuits for programmable cell reconfiguration in plants

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Plant biotechnology predominantly relies on a restricted set of genetic parts with limited capability to customize spatiotemporal and conditional expression patterns. Synthetic gene circuits have the ability to integrate multiple customizable input signals through a processing unit constructed from biological parts, to produce a predictable and programmable output. Here, we present a suite of functional recombinase-based gene circuits for use in plants. We first established a range of key gene circuit components compatible with plant cell functionality. We then used these to develop a range of operational logic gates using the identify function (activation) and negation function (repression) in Arabidopsis protoplasts and in vivo, demonstrating their utility for programmable manipulation of transcriptional activity in a complex multicellular organism. Through utilization of genetic recombination these circuits create stable long-term changes in expression and recording of past stimuli. This highly-compact programmable gene circuit platform provides new capabilities for engineering sophisticated transcriptional programs and previously unrealised traits into plants.

Related articles

Related articles are currently not available for this article.