Accelerating PERx Reaction Enables Covalent Nanobodies for Potent Neutralization of SARS-Cov-2 and Variants
Abstract
The long-lasting COVID-19 pandemic and increasing SARS-CoV-2 variants demand effective drugs for prophylactics and treatment. Protein-based biologics offer high specificity yet their noncovalent interactions often lead to drug dissociation and incomplete inhibition. Here we developed covalent nanobodies capable of binding with SARS-CoV-2 spike protein irreversibly via proximity-enabled reactive therapeutic (PERx) mechanism. A novel latent bioreactive amino acid FFY was designed and genetically encoded into nanobodies to accelerate PERx reaction rate. After covalent engineering, nanobodies binding with the Spike in the down state, but not in the up state, were discovered to possess striking enhancement in inhibiting viral infection. In comparison with the noncovalent wildtype nanobody, the FFY-incorporated covalent nanobody neutralized both authentic SARS-CoV-2 and its Alpha and Delta variants with potency drastically increased over tens of folds. This PERx-enabled covalent nanobody strategy and uncovered insights on potency increase can be valuable to developing effective therapeutics for various viral infections.
Related articles
Related articles are currently not available for this article.