Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex
Abstract
Sexual reproduction is a ubiquitous and ancient trait of eukaryotic life. While sexual organisms are usually faced with the challenge of finding a compatible mating partner, species as diverse as animals, plants, and fungi have repeatedly evolved the ability to reproduce sexually without an obligate requirement for another individual. Here, we uncovered the underlying mechanism of self-compatibility (homothallism) in Cryptococcus depauperatus, a fungal species sister to the clinically relevant human fungal pathogens Cryptococcus neoformans and Cryptococcus gattii species complexes. In contrast to C. neoformans or C. gattii, which grow as a yeast in the asexual stage, and produce hyphae, basidia, and infectious spores during the sexual stage, C. depauperatus grows exclusively as hyphae decorated with basidia and abundant spores and appears to be continuously engaged in sexual reproduction. By combining the insights from comparative genomics and genetic analyses of mutants defective in key mating and meiosis genes, we demonstrate the sexual cycle of C. depauperatus involves meiosis, and reveal that self-compatibility is orchestrated by the expression, in the same cell, of an unlinked mating receptor (Ste3a) and pheromone ligand (MFα) pair seemingly derived from opposite mating types of a heterothallic (self-sterile) ancestor. We identified a putative mating-type (MAT) determining region containing genes phylogenetically aligned with MATa alleles of other species, and a few MATα gene alleles scattered and unlinked throughout the genome, but no homologs of the mating-type homeodomain genes SXI1 (HD1) and SXI2 (HD2). Comparative genomic analyses suggested a dramatic remodeling of the MAT locus possibly owing to reduced selective constraints to maintain mating-type genes in tight linkage, associated with a transition to self-fertility. Our findings support C. depauperatus as an obligately sexual, homothallic fungal species and provide additional insight into the repeated transitions between modes of sexual reproduction that have occurred throughout the fungal kingdom.
Related articles
Related articles are currently not available for this article.