Evolved bacterial resistance to the chemotherapy gemcitabine modulates its efficacy

This article has 4 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Drug metabolism by the microbiome can influence anti-cancer treatment success. We previously suggested that chemotherapies with antimicrobial activity can select for adaptations in bacterial drug metabolism that can inadvertently influence the host’s chemoresistance. We demonstrated that evolved resistance against fluoropyrimidine chemotherapy lowered its efficacy in worms feeding on drug-evolved bacteria (Rosener et al., 2020). Here we examine a model system that captures local interactions that can occur in the tumor microenvironment. Gammaproteobacteria colonizing pancreatic tumors can degrade the nucleoside-analog chemotherapy gemcitabine and, in doing so, can increase the tumor’s chemoresistance. Using a genetic screen inEscherichia coli, we mapped all loss-of-function mutations conferring gemcitabine resistance. Surprisingly, we found that one third of resistance mutations increase or decrease bacterial drug breakdown and therefore can either lower or raise the gemcitabine load in the local environment. Experiments in threeE. colistrains revealed that evolved adaptation converged to inactivation of the nucleoside permease NupC, an adaptation that increased the drug burden on co-cultured cancer cells. The two studies provide complementary insights on the potential impact of microbiome adaptation to chemotherapy by showing that bacteria-drug interactions transpire locally and systemically and can influence chemoresistance in the host.

Related articles

Related articles are currently not available for this article.